search blog...
e Home

o Wiki
L]

o Facebook

Search Wiki Search Forum Search Blog
Search

Login / Register

e About

Muxing Around With The CD74HC4067 + Arduino

Tuesday, February 1 5, 2011

Have you ever found yourself running out of pins to read an array of analog sensors? Don’t worry, you’re not alone, it happens to the best of us, and there is
something you can do about it. An analog / digital multiplexer like the CD74HC4067 (mux for short) can help multiply the amount of pins you have, and it is
insanely easy to connect to your arduino or other microcontroller

The CD74HC4067 is a 16-Channel Analog Multiplexer/Demultiplexer. It is available in a breadboard-ready DIP package, or, if you are as addicted to
breakout boards as I am, SparkFun offers a breakout board SSOP version. What it allows you to do is use 4 digital pins, to control the flow of one pin to 16
others. It can actually be used in either direction, and even with serial or other digital interfaces. For this tutorial we are just going to read the value from 16
pots because buying 16 analog sensors for this would have been overkill.

A multiplexer of this sort really just acts as a 16 to one 1 switch. The 4 digital pins are used to set HIGH or LOW, in a binary fashion (0-15) to determine what
pin “SIG” is connected to. So bringing all 4 pins LOW would switch the CD74HC4067 to channel 0 (so SIG and CO would be connected), bringing them all
HIGH would switch it to 15 (so SIG and C15 would be connected). It is simple binary, but in the off chance you are one of the 99.8% of the world who
doesn’t know binary, here is a simple table on the right.

To simplify things, 1 is HIGH, 0 is LOW

0000-0
1000 -1
0100-2
1100 -3
0010-4
1010 -5
0110-6
1110 -7
0001 -8
1001 -9
0101 —10
1101 - 11
0011 —12
1011 -13
0111 -14

111115

The schematic may seem complicated, but it is not. Not at all. And to prove it, look at the version on the left with out the pots; Much easier, right? The
potentiometers are just connected with to ground and Sv, and the middle pin connected to one of the 16 channels on the CD74HC4067. 16 pots is just enough
to make anything look scary little scary. Also of note is the EN, or enable, pin. The EN pin is a kill switch: pull it up to 5v to disable all channels, and ground
it to enable them. Im just going to leave it at ground so we can use it and simplify things, but feel free to connect it to a digital pin, and control when the mux
is enabled or disabled.



0000000000000
&R - T 7 T 0 = e e L - s
S = HITTTIE =

-0s
2

;.'

ES

cY
Q9ors ™

<
(v}
($

ANALOG IN .
0 123465

Nice and simple right?
— |

A N & 6 a6 ¢ G

2 i °

Same, but with pots connected to the 16 channel pins.

For the code example I just took the binary table, made it into a simple array, and put it in a function that does this: You give the function a number 0-15. It
looks up that number in the binary array, then it loops through those 4 numbers and sets SO, S1, S2, and S3 appropriately. (In the arduino software HIGH is
the same as1 & LOW is the same as 0). After it sets the pins so that SIG is connected to the correct channel, it then reads analog 0 (where SIG is connected to)

and returns that value. So all you need to do is something like this

Copy Code

//switch mux to channel 15 and read the value
int val = readMux(15);

Unless otherwise stated, this code is released under the MIT License — Please use, change and share it.

Here is the complete code. It loops through each channel on the mux, reads the value, then prints the value in the serial monitor.

Copy Code

//Mux control pins
int s@ = 8;

int s1 = 9;

int s2 = 10;

int s3 = 11;

//Mux in "SIG" pin
int SIG_pin = @;



void setup(){
pinMode(s@, OUTPUT);
pinMode(s1, OUTPUT);
pinMode(s2, OUTPUT);
pinMode(s3, OUTPUT);

digitalWrite(s@, LOW);
digitalWrite(sl, LOW);
digitalWrite(s2, LOW);
digitalWrite(s3, LOW);

Serial.begin(9600);

void loop(){

//Loop through and read all 16 values

//Reports back Value at channel 6 is: 346

for(int i = 0; 1 < 16; i ++){
Serial.print("Value at channel ");
Serial.print(i);

Serial.print("is : ");
Serial.println(readMux(i));
delay(1000);

int readMux(int channel){
int controlPin[] = {s0, sl1, s2, s3};

int muxChannel[16][4]={
{0,0,0,0}, //channel
{1Je)e)e}) //channel
{0,1,0,0}, //channel
{1,1,0,0}, //channel
{0,0,1,08}, //channel
{1,0,1,0}, //channel
{eJl)l)e}) //channel
{1,1,1,0}, //channel
{eJe)e)l}) //channel
{1,0,0,1}, //channel
{eJl)e)l}) //channel 10
{1,1,0,1}, //channel 11
{0,0,1,1}, //channel 12
{1,0,1,1}, //channel 13
{0,1,1,1}, //channel 14
{1,1,1,1} //channel 15

};

WONOTUAWNRO

//loop through the 4 sig
for(int 1 = 0; 1 < 4; i ++){
digitalWrite(controlPin[i], muxChannel[channel][i]);

¥

//read the value at the SIG pin
int val = analogRead(SIG_pin);

//return the value
return val;

}

Unless otherwise stated, this code is released under the MIT License — Please use, change and share it.
Not just for reading

The CD74HC4067 is capable of more than reading analog signals. It can be uses in either direction. So you could connect SIG to 5v, and then be able to
switch the 5v to one of 16 channel pins if you needed to control 16 relays. It also works with serial. So... if you had 16 RFID readers that output serial, you
could connect the SIG pin of the CD74HC4067 to digital 0 on the arduino (Serial RX pin) and the serial out of an RFID reader to one of the channels and be
able to read from all 16 RFID readers.

The CD74HC4067 is a super simple to use bidirectional mux that can make your life a lot easier. So please, put this to good use, and don’t let me see you
controlling 16 LEDs with it.

We want you to blog with us

bildr is looking for anyone interested in writing any sort of blog post for bildr. If you think you would like to help bildr by writing something, or have an idea
for a post you think should be written, please contact us at blog@bildr.org or let us know in the forum.

Li 99 Comments
Archives

e QOctober 2013
e November 2012
e August 2012

e April 2012

e March 2012

e February 2012

e January 2012
¢ October 2011



